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Abstract. Let L(X,Z) be the space of continuous linear mappings between topological
vector spaces, where Z is Hausdorff and preordered by a closed convex cone C. In this
paper, we introduce a notion of semicontinuity to any function from a topological space into
X. A notion of semicontinuity is also introduced to any function from a topological space
into L(X,Z). These two notions of semicontinuity are related by the embedding of X into
L(X,Z). Their basic properties are given. As an application, we derive some existence results
for the mixed vector variational-like inequality.
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1. Introduction

By a topological vector space we shall always mean a real topological vec-
tor space. For any two topological vector spaces X and Z, let L(X,Z)

denote the family of all continuous linear mappings from X into Z. When
Z is the set R of all real numbers, L(X,Z) is the usual topological dual
space X∗ of X. For any x ∈ X and any � ∈ L(X,Z), we shall alternatively
write the value �(x) as 〈�, x〉.

Throughout the paper, let Z denote an ordered Hausdorff topological
vector space with a preordering defined by a closed convex cone C ⊂ Z
such that C �=Z and intC �=∅, where intC is the interior of C in Z. Note
that C �=Z if and only if intC does not contain the zero vector.

The work was motivated by solving the following mixed vector varia-
tional-like inequality. For a nonempty subset K of a topological vector
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space X, the mixed vector variational-like inequality problem associated
with the given functions T : K −→ L(X,Z), ϕ : K × K −→ X and f :K ×
K −→Z,MVVLI(T , ϕ, f ) for short, is the problem to find x̂ ∈K such that

〈T x̂, ϕ(x̂, y)〉+f (x̂, y)∈ (−intC)c for all y ∈K, (1)

where (−intC)c is the complement of −intC in Z.
The modeling of the problem (1) is quite general. When f ≡ 0 and

ϕ(x, y) = y − x, the problem (1) becomes the vector variational inequality.
The vector variational inequality was first introduced by Giannessi in finite
dimensional spaces (Giannessi, 1980), and later was generalized and exten-
sively studied. See Chen and Yang (1990), Chiang and Yao (2002), Konnov
(2001), Yang and Yao (2002) and references there in.

When Z = R and C = R+ the set of all non-negative real numbers, the
MVVLI(T , ϕ, f ) becomes the mixed variational-like inequality problem of
finding x̂ ∈K such that

〈T x̂, ϕ(x̂, y)〉+f (x̂, y)�0 for all y ∈K. (2)

When f ≡ 0 and ϕ(x, y) = y − x, the problem (2) is the usual variational
inequality. If f (x, y)= g(y)− g(x) for some function g: K −→ R, then the
problem (2) reduces to that studied in Ansari and Yao (2001), Dien (1992)
and Noor (1994). If f ≡ 0, then the problem (2) becomes the variational-
like inequality studied in Ansari and Yao (1998), Ansari and Yao (2000),
Parida et al. (1989), Siddiqi et al. (1994) and Yang and Chen (1992).

It is well known that there is a very close connection between optimi-
zation problems and variational inequalities. It turns out that the vector
variational inequality also provides a very good and useful tool in deal-
ing with vector optimization problems. See Chen and Yang (1990), Chen
(1989), Chen and Cheng (1987), Lee et al. (2000), Yang and Goh (1997)
and the references therein. It is then worth efforts to pay much more atten-
tion to the research on vector variational inequalities.

Up to the author’s knowledge, in most work on variational-like inequali-
ties, the weakest continuity assumption which would be made on a function
g: K −→ X was to require that g is continuous from the strong topology
on K to the weak topology on X. This equivalent to requiring that � ◦ g

is continuous from K into R for every �∈X∗. Here, we shall consider the
case where �◦g is upper (or lower) semicontinuous for very �∈X∗.

More generally, in Section 3, we shall consider any function g from a
topological space Y into X such that for every � ∈ L(X,Z) the function
� ◦g is C-upper semicontinuous or C-lower semicontinuous in the sense of
Tanaka (Tanaka, 1997). Such a function g will be called CL-upper or CL-
lower semicontinuous.
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By considering the L-topology introduced in Chiang and Yao (2002), we
prove in Theorem 3.1 that if C has a closed convex bounded base (see
Remark 3.1), then g : Y −→ XL is continuous if and only if g is simul-
taneously CL-upper semicontinuous and CL-lower semicontinuous, where
XL is the space X equipped with the L-topology. The L-topology will be
recalled in Section 2.

To define the continuity of the function T given in (1), we consider two
topologies on L(X,Z), the topology of simple convergence and the topol-
ogy of bounded convergence. These topologies are described in Section 2.
We shall write LE(X,Z) for the space L(X,Z) either equipped with the
topology of simple convergence or of bounded convergence.

In Section 3, we introduce a notion of C∗
E -semicontinuity to any function

T from a topological space W into LE(X,Z) so that T is continuous if and
only if T is simultaneously C∗

E -upper semicontinuous and C∗
E -lower semi-

continuous whenever C has a closed convex bounded base; see Theorem
3.4. By using the embedding from X into L(X,Z), the notion of C∗

E -semi-
continuity is related to the notion of CL-semicontinuity in Theorem 3.6.

To find solutions for the mixed vector variational-like inequality problem
(1), we prove that if T : W −→LE(X,Z) is C∗

E -upper semicontinuous and if
g: Y −→X is CL-upper semicontinuous, then, under certain conditions, the
function (w, y) �−→〈T (w), g(y)〉 is C-upper semicontinuous on W ×Y . See
Theorem 3.7 and its corollaries. With these theorems, we derive some exis-
tence results in Section 4 for the problem (1) with the associated functions
semicontinuous.

In this paper, unless specifically stated otherwise, we shall always refer to
X as a topological vector space. For a nonempty subset A of X, let co(A)
denote the convex hull of A, and let F(A) denote the family of all non-
empty finite subsets of A.

2. Preliminaries

In this section, we recall the L-topology defined in Chiang and Yao (2002),
the topology of simple convergence and the topology of bounded conver-
gence on L(X,Z).

The L-topology on X is the topology having the sets �−1(U) as subba-
sis elements, where U is open in Z and �∈L(X,Z). When Z = R, the L-
topology on X becomes the usual weak topology. Let XL denote the space
X equipped with the L-topology. It is easy to see that XL is a topologi-
cal vector space. Note that XL is Hausdorff if X is Hausdorff and locally
convex (Chiang and Yao, 2002, Theorem 3.1).

A subset E of X will be called L-open (L-closed, L-bounded or L-com-
pact) if E is open (closed, bounded or compact) in XL. It is clear that
every L-open (or L-closed) subset of X is originally open (or closed) in X,
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but not conversely in general. Similarly, compact (or bounded) subsets of
X are L-compact (or L-bounded). We shall prove in Proposition 2.2 that
if X is a normed space and Z is a Banach space, then L-bounded subsets
are bounded.

A net {xα} in X is called L-convergent if it is convergent in XL to some
x ∈X, denoted by xα

L→x. Observe that xα
L→x if and only if 〈�, xα〉→〈�, x〉

for all �∈L(X,Z). When Z =R, the L-convergence coincides with the weak
convergence.

PROPOSITION 2.1. A nonempty set K⊂X is L-bounded if and only if �(K)

is bounded in Z for every �∈L(X,Z).

Proof. Clearly, �(K) is bounded in Z when K is L-bounded. Conversely,
assume that �(K) is bounded for every � ∈ L(X,Z), and consider any 0-
neighborhood U in XL. Write

U =
m⋂

j=1

�−1
j (Vj ),

where �j ∈L(X,Z) and Vj are 0-neighborhoods in Z for 1�j �m. Choose
a balanced 0-neighborhood V in Z such that

V ⊂
m⋂

j=1

Vj .

For every j , there is a λj > 0 such that �j (K) ⊂ λjV . By setting λ =
max1�j�mλj , we have �j (K)⊂λjV ⊂λV , and

K ⊂λ

m⋂

j=1

�−1
j (V )⊂λ

m⋂

j=1

�−1
j (Vj )=λU.

This proves that K is L-bounded.

Let BX denote the family of all bounded subsets of X, and let NZ be
the family of 0-neighborhoods in Z. For every E ∈BX and every V ∈NZ ,
let

[E,V ]={f ∈L(X,Z) :f (E)⊂V }.

Let F0(X) = F(X) ∪ {∅}. For E = BX or F0(X), there is a unique transla-
tion-invariant topology TE on L(X,Z) so that the topological vector space
LE(X,Z)= (L(X,Z),TE) has the family
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{[E,V ] :E ∈E and V ∈NZ}

as its 0-neighborhood base. See Schaefer (1999), p. 79.

(a) If E = F0(X), then TE is the topology of simple convergence (or the
topology of pointwise convergence). In this case, we write LE(X,Z)=
Ls(X,Z). When Z = R,Ls(X,Z) is the usual weak-star topology on
X∗.

(b) If E = BX, then TE is the topology of bounded convergence. In this
case, we write LE(X,Z)=Lb(X,Z).

Note that Ls(X,Z) and Lb(X,Z) are Hausdorff since Z is Hausdorff
(Schaefer, 1999, pp. 79–80). If X and Z are normed spaces, the norm

� �−→‖�‖= sup{| 〈�, x〉 |:|x |�1}

generates that topology of bounded convergence on L(X,Z), i.e., Lb(X,Z)

is also a normed space (Schaefer, 1999, p. 81). Moreover, Lb(X,Z) is a
Banach space if Z is a Banach space (Schaefer, 1999, p. 42).

It is well known that every x ∈ X induces a continuous linear mapping
x∗ from Lb(X,Z) into Z defined by

〈x∗, y〉=〈y, x〉 for y ∈L(X,Z).

Note that the mapping J :X −→Lb(Lb(X,Z),Z) defined by

J (x)=x∗

is an embedding, and that if X and Z are normed spaces, then ‖J (x)‖=
|x| for x ∈ X. As a consequence of the principle of uniform boundedness
(Schaefer, 1999, p. 84), we prove:

PROPOSITION 2.2. Let X be a normed space and Z be a Banach space.
Then a nonempty subset K of X is L-bounded if and only if it is bounded.

Proof. It suffices to show that K is bounded when it is L-bounded. Let
K∗ ={x∗:x ∈K}. It follows from Proposition 2.1 that for every �∈Lb(X,Z),

K∗(�)={〈x∗, �〉:x ∈K}={〈�, x〉 :x ∈K}=�(K)

is bounded in Z. Since Lb(X,Z) is a Banach space, from the principle of
uniform boundedness, we conclude that K∗ is bounded in Lb(Lb(X,Z),Z),
and so K is bounded in X.
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Let {yα} be a net in L(X,Z). We shall simply write yα −→ y when {yα}
converges in Lb(X,Z) to y ∈ L(X,Z), and write yα

s−→y when {yα} con-
verges in Ls(X,Z) to y. Note that yα

s−→y if and only if 〈yα, x〉 → 〈y, x〉
for every x ∈X. When Z =R, the simple convergence is the usual weak-star
convergence.

The proof of the following proposition is routine and omitted.

PROPOSITION 2.3. Assume that X is Hausdorff. Let {(xα, �α)} be a net in
X ×L(X,Z). Then limα〈�α, xα〉=〈�, x〉 if either one of the following holds.

(i) {xα} lies in a bounded subset of X with xα
L−→x ∈ X, and �α −→ � ∈

L(X,Z).
(ii) xα −→x, and {�α} lies in a bounded subset of Lb(X,Z) with �α

s−→�∈
L(X,Z).

REMARK 2.1. As a consequence of Corollary 4.1 and Theorem 4.2 (p.
83) in Schaefer (1999), if either X and Z are Hausdorff locally convex
with X barreled or X is a Baire space, then, in (ii) of Proposition 2.3, it
is enough to require that {�α} is bounded in Ls(X,Z).

3. Semicontinuous Mappings

In this section, we shall introduce semicontinuity to functions from
topological spaces into X or L(X,Z). Recall that a function f form a
topological space Y into Z is C-upper semicontinuous (Tanaka, 1997) if
f −1(z− intC) is open in Y for every z∈Z, or equivalently, for every y ∈Y

and for every v ∈ intC there is a neighborhood U of y such that

f (y ′)∈f (y)+v − intC for all y ′ ∈U.

While f is C-lower semicontinuous if −f is C-upper semicontinuous.
When (Z,C) = (R,R+), the notion of C-upper (or C-lower) semicon-

tinuity reduces to the usual upper (or lower) semicontinuity. It is well
known that a function f :Y →R is upper semicontinuous if and only if lim
supαf (yα)�f (y) whenever {yα} is a net in Y converging to y ∈Y . There is
an analogous criterion for C-upper semicontinuity proved in Theorem 2.4
of Chadli et al. (2002), which says that, when Y is Hausdorff, a function
f : Y →Z is C-upper semicontinuous if and only if for every v ∈ intC and
for every y ∈Y , there is an αv (depending on x) such that

α �αv ⇒{f (yβ) :β �α}⊂f (y)+v − intC,

whenever {yα} is a net in Y converging to y.
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REMARK 3.1. A mapping from a topological space into Z may not be con-
tinuous when it is simultaneous C-upper and C-lower semicontinuous. See
Remark 5.4 (p. 23) in Luc (1989) for an example. Such a mapping is contin-
uous when C has a closed convex bounded base (Luc, 1989, Theorem 5.3,
p. 22). A base B of C is a subset of Z −{0} such that C ={tb :b∈B and t ∈
R+}, and such that for every c∈C −{0}, there is a unique (b, t)∈B ×R+ with
c= tb. When Z is finite dimensional, C has a closed convex bounded base if
and only if it is pointed, i.e., C ∩ (−C)={0}. However, this is in general not
true in infinite dimensional spaces; see Remark 5.4 (p. 23) in Luc (1989).

Note that if a closed cone C in a Hausdorff topological vector space Z
has a closed convex bounded base, then C is pointed (Luc, 1989, Proposi-
tion 1.7, p. 4), and for any given 0-neighborhood V in Z there is another
0-neighborhood V0 in Z such that (V0 −C)∩ (V0 +C)⊂V (Luc, 1989, Prop-
osition 1.8, p. 5).

DEFINITION 3.1. Let Y be a topological space. A function f :Y →X will
be called CL-upper semicontinuous if for every � ∈ L(X,Z), the function
�◦f is C-upper semicontinuous. If −f is CL-upper semicontinuous, then
f is called CL-lower semicontinuous.

It is clear that if f is continuous from Y into X or XL, then f is simul-
taneously CL-upper and CL-lower semicontinuous.

THEOREM 3.1. Let f be a function from a topological space Y into X,
and assume that C has a closed convex bounded base. Then f : Y → XL is
continuous if and only if f is simultaneously CL-upper semicontinuous and
CL-lower semicontinuous.

Proof. Assume that f is CL-upper semicontinuous and is CL-lower semi-
continuous. Note that f is continuous from Y into XL if and only if �◦f

is continuous from Y into Z for every �∈L(X,Z). Since � ◦f is simulta-
neously C-upper semicontinuous and C-lower semicontinuous, and since C

has a closed convex bounded base, �◦f is continuous.

The following theorem is a consequence of Theorem 2.1 of Tanaka (1997).

THEOREM 3.2. Let Y be a topological space, and let f, g: Y →X and µ :
Y →R be functions such that µ(y)�0 for all y ∈Y .

(i) if f and g are CL-upper semicontinuous, then so are f +g, and λf for
any λ�0.

(ii) If f is CL-upper semicontinuous, and if µ is upper semicontinuous, then
for any fixed point x0 of X the function h: Y → X defined by h(y) =
f (y)+µ(y)x0 is CL-upper semicontinuous.
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Proof. Let � ∈ L(X,Z) be arbitrary. Since � ◦ f and � ◦ g are C-upper
semicontinuous, �◦ (f +g)= �◦f + �◦g and �◦ (λf )=λ(�◦f ) are also C-
upper semicontinuous.

Note that �◦h(y)= �◦f (y)+µ(y)�(x0) for all y ∈Y , and that the func-
tion y �−→µ(y)�(x0) is C-upper semicontinuous. The proof is complete.

In the rest of this section, we shall also denote E by BX or F0(X) =
F(X)∪{∅}. Now, we are going to define semicontinuity for mappings from
topological spaces into LE(X,Z). We remark that for any (E, v)∈E × intC,
the set [E,v − intC] is a 0-neighborhood in LE(X,Z).

DEFINITION 3.2. Let Y be a topological space, and let T : Y → L(X,Z)

be a function.

(i) T will be called C∗
E -upper semicontinuous at y0 ∈Y if for any (E, v)∈

E × intC, there is a neighborhood U of y0 such that T (y) ∈ T (y0) +
[E,v − intC] for all y ∈U .

(ii) If −T is C∗
E -upper semicontinuous at y0, then T is called C∗

E -lower
semicontinuous at y0. Equivalently, for any (E, v) ∈ E × intC, there is
a neighborhood U of y0 such that T (y) ∈ T (y0) + [E,−v + intC] for
all y ∈U .

(iii) T is simply called C∗
E -upper(respectively, C∗

E -lower) semicontinuous if
it is C∗

E -upper (respectively, C∗
E -lower) semicontinuous at every point

of Y .

We shall write C∗
E = C∗

L(b) when E = BX, and write C∗
E = C∗

L(s) when E =
F0(X). Note that

(a) T is C∗
L(s)-upper semicontinuous at y0 if and only if for any (x, v) ∈

X × intC there is a neighborhood U of y0 such that T (y) ∈ T (y0) +
[{x}, v − intC] for all y ∈U , and

(b) T is C∗
L(s)-lower semicontinuous at y0 if and only if for any (x, v) ∈

X × intC there is a neighborhood U of y0 such that T (y) ∈ T (y0) +
[{x},−v + intC] for all y ∈U .

REMARK 3.2. Let T be a function from a topological space Y into
L(X,Z). The following assertions are immediate consequences of defini-
tion.

(a) If T is C∗
L(b)-upper (respectively, C∗

L(b)-lower) semicontinuous, then T

is C∗
L(s)-upper (respectively, C∗

L(s)-lower) semicontinuous.
(b) If T :Y −→LE(X,Z) is continuous, then it is C∗

E -upper semicontinuous
and is C∗

E -lower semicontinuous.
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By using a similar argument as in the proof of Proposition 2.1 of Tanaka
(1997), we prove

THEOREM 3.3. Let T be a function from a topological space Y into
L(X,Z). Then:

(i) T is C∗
E -upper semicontinuous at y0 ∈Y if and only if for any 0-neigh-

borhood [E,V ] in LE(X,Z) there is a neighborhood U of y0 such that

T (y)−T (y0)∈ [E,V − intC] f or all y ∈U.

(ii) T is C∗
E -lower semicontinuous at y0 ∈Y if and only if for any 0-neigh-

borhood [E,V ] in LE(X,Z) there is a neighborhood U of y0 such that

T (y)−T (y0)∈ [E,V + intC] for all y ∈U.

Proof. Note that any 0-neighborhood V in Z contains a symmetric
0-neighborhood V ′, i.e., V ′ =−V ′. Since

[E,−V ′ + intC]⊂ [E,V + intC],

by considering symmetric 0-neighborhoods in Z, the statement (ii) follows
from (i) immediately.

For the proof of (i), we first assume that T is C∗
E -upper semicontinuous.

Choose any v ∈V ∩ intC. There is a neighborhood U of y0 such that

y ∈U �⇒T (y)−T (y0)∈ [E,v − intC]⊂ [E,V − intC].

Conversely, let v ∈ intC be arbitrary. There is a neighborhood V0 of v in
Z such that V0 ⊂ intC. Clearly, V =v −V0 is a 0-neighborhood in Z. Note
that

V − intC =v −V0 − intC ⊂v − intC

since V0 ⊂ intC. There is a neighborhood U of y0 such that

y ∈U �⇒T (y)−T (y0)∈ [E,V − intC]⊂ [E,v − intC].

Therefore, T is C∗
E -upper semicontinuous at y0.

THEOREM 3.4. Let T be a function from a topological space Y into L(X,Z),
and assume that C has a closed convex bounded base. Then T :Y →LE(X,Z)

is continuous if and only if it is simultaneously C∗
E -upper semicontinuous and

C∗
E -lower semicontinuous.
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Proof. It remains to show that T is continuous when it is simultaneously
C∗

E -upper semicontinuous and C∗
E -lower semicontinuous.

Let y0 ∈ Y be arbitrary, and let [E,V ] be any 0-neighborhood in LE(X,Z).
It follows from Proposition 1.8 (p. 5) in Luc (1989) that there is a 0-neigh-
borhood V0 in Z such that

(V0 −C)∩ (V0 +C)⊂V ;

(see Remark 3.1). By Theorem 3.3, there is neighborhood U of y0 such that

y ∈U �⇒T (y)−T (y0)∈ [E,V0 − intC]∩ [E,V0 + intC]⊂ [E,V ].

The proof is complete.

THEOREM 3.5. Let S and T be operators from a topological space Y into
L(X,Z). If S and T are C∗

E -upper semicontinuous at y0 ∈Y , then so are the
functions S +T , λT and T +�, where λ�0 and �∈L(X,Z).

Proof. It is clear that T +� is C∗
E -upper semicontinuous at y0. Let (E, v)∈

E × intC be arbitrary. There is a neighborhood U of y0 such that

y ∈U�⇒T (y)∈T (y0)+
[
E,

v

λ
−intC

]
�⇒λT (y)∈λT (y0)+ [E,v − intC].

Therefore, λT is C∗
E -upper semicontinuous at y0.

Finally, we prove that S +T is C∗
E -upper semicontinuous at y0. There is

a neighborhood V of y0 such that

y ∈V �⇒S(y)∈S(y0)+
[
E,

v

2
− intC

]
and T (y)∈T (y0)+

[
E,

v

2
− intC

]
.

Now, for any y ∈V ,

S(y)+T (y)∈S(y0)+T (y0)+ [E,v − intC].

This completes the proof.

Let Y be a topological space, and write XL
b =Lb(X,Z). Any function f :

Y −→X induces a function f ∗ :Y −→Lb(X
L
b ,Z) defined by

f ∗(y)=J (f (y)) for y ∈Y,

where J (x)=x∗ for x ∈X.
In the following, we relate the CL-semicontinuity of f to the C∗

L(b)-semi-
continuity of f ∗.
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THEOREM 3.6. Let f be a function from a topological space Y into X.
Then f is CL-upper (respectively, CL-lower) semicontinuous if and only if f ∗

of f is C∗
L(b)-upper (respectively, C∗

L(b)-lower) semicontinuous.

Proof. First, assume that f is CL-upper semicontinuous, and we prove
that f ∗ is C∗

L(b)-upper semicontinuous at any fixed point y0 ∈ Y . Let B̂X

denote the family of all bounded subsets of XL
b . Let (Ê, v)∈ (B̂X, intC) and

�∈ Ê be arbitrary. Since �◦f is C-upper semicontinuous, there is a neigh-
borhood U of y0 such that

〈�, f (y)〉∈ 〈�, f (y0)〉+v − intC for all y ∈U.

Since 〈�, f (y)〉=〈f ∗(y), �〉 for all y ∈Y , we have

y ∈U �⇒〈f ∗(y), �〉∈ 〈f ∗(y0), �〉+v − intC

�⇒〈f ∗(y)−f ∗(y0), �〉∈v − intC.

This proves that f ∗(y)∈f ∗(y0)+ [Ê, v − intC] for all y ∈U . Therefore, f ∗

is C∗
L(b)-upper semicontinuous at y0.

Conversely, assume that f ∗ is C∗
L(b)-upper semicontinuous. We have to

show that � ◦ f is C-upper semicontinuous for every � ∈ L(X,Z). Let
(y0, v) ∈ Y × intC be arbitrary. Since {�} ∈ B̂X, there is a neighborhood U

of y0 such that

y ∈U �⇒f ∗(y)∈f ∗(y0)+ [{�}, v − intC]

�⇒〈f ∗(y)−f ∗(y0), �〉∈v − intC

�⇒〈�, f (y)〉∈ 〈�, f (y0)〉+v − intC.

The proof is complete.

THEOREM 3.7. Let W and Y be topological spaces. For given functions T :
W −→L(X,Z) and f :Y −→X, let �:W ×Y −→Z be the function defined by

�(w,y)=〈T (w), f (y)〉 for (w, y)∈W ×Y.

(i) If T is C∗
L(b)-upper semicontinuous, and if f is CL-upper semicontinuous

with f (Y ) bounded in X, then � is C-upper semicontinuous.
(ii) If T is C∗

L(s)-upper semicontinuous with T (W) bounded in Lb(X,Z),
and if f is CL-upper semicontinuous, then � is C-upper semicontinuous.

Proof. Let (w0, y0) be any fixed point in W ×Y , and let v ∈ intC be arbi-
trary. We shall prove that there is a neighborhood � of (w0, y0) in W ×Y

such that
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�(w,y)∈�(w0, y0)+v − intC for all (w, y)∈�.

Note that

�(w,y)−�(w0, y0)=〈T (w)−T (w0), f (y)〉+〈T (w0), f (y)−f (y0)〉.

Since the function y �−→ 〈T (w0), f (y) − f (y0)〉 is C-upper semicontinuous
on Y , there is a neighborhood V of y0 in Y such that

y ∈V �⇒〈T (w0), f (y)−f (y0)〉∈ v

2
− intC.

There is a neighborhood U of w0 in W such that

w ∈U �⇒T (w)∈T (w0)+
[
f (K),

v

2
− intC

]

�⇒〈T (w)−T (w0), f (y)〉∈ v

2
− intC for all y ∈Y.

Now, by setting �=U ×V , we have

�(w,y)−�(w0, y0)∈v − intC for all (w, y)∈�.

Next, we prove (ii). Let (w0, y0) and v be given above. Note that

�(w,y)−�(w0, y0)=〈T (w)−T (w0), f (y0)〉+〈T (w), f (y)−f (y0)〉
=〈T (w)−T (w0), f (y0)〉+〈f ∗(y)−f ∗(y0), T (w)〉.

There is a neighborhood U of w0 in W such that

w ∈U �⇒T (w)−T (w0)∈
[
{f (y0)}, v

2
− intC

]

�⇒〈T (w)−T (w0), f (y0)〉∈ v

2
− intC.

By Theorem 3.6, there is a neighborhood V of y0 in Y such that

y ∈V �⇒f ∗(y)−f ∗(y0)∈
[
T (W),

ν

2
− intC

]

�⇒〈f ∗(y)−f ∗(y0), T (w)〉∈ ν

2
− intC for all w ∈W.

Now,

�(w,y)−�(w0, y0)∈ν − intC for all (w, y)∈U ×V.

Therefore, � is C-upper semicontinuous at (w0, y0).
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REMARK 3.3. By use of notation given in Theorem 3.7, assume that W =
Y . We remark that if � is C-upper semicontinuous, then the function g :
Y −→Z defined by

g(y)=〈T (y), f (y)〉

is also C-upper semicontinuous.

REMARK 3.4. Let T ,f and � be given in Theorem 3.7. From Proposi-
tion 2.3 we conclude that � is continuous if either one of the following
holds.

(a) T :W −→Lb(X,Z) and f :Y −→XL (or f :Y −→X are continuous, and
f (Y ) is bounded in X.

(b) T : W −→ Ls(X,Z) and f : Y −→ X are continuous, and T (W) is
bounded in Lb(X,Z).

COROLLARY 3.1. Let W and Y be topological spaces, let T :W −→L(X,Z)

and f :Y −→X be functions, and let � be the function defined in Theorem 3.7.

(i) Assume that T is C∗
L(b)- upper semicontinuous, and f is continuous. If

Y is compact, then � is C-upper semicontinuous.
(ii) Assume that T : W −→ Lb(X,Z) is continuous, and f : Y −→ X is CL-

upper semicontinuous. If W is compact, then � is C-upper semicontin-
uous.

COROLLARY 3.2. Assume that Z is a Banach space and X is a normed
space, and let W and Y be topological spaces with Y compact. If T : W −→
L(X,Z) is C∗

L(b)-upper semicontinuous, and if f :Y −→XL is continuous, then
the function � defined in Theorem 3.7 is C-upper semicontinuous.

Proof. Since f (Y ) is L-compact and L-bounded in X, by Proposition 2.2,
f (Y ) is bounded in X. Now, the corollary follows from Theorem 3.7.

COROLLARY 3.3. Assume that either X and Z are Hausdorff locally con-
vex with X barrelled, or X is a Baire space. Let T : W −→ L(X,Z) and
f :Y −→X be functions. Then the function � defined in Theorem 3.7 is C-
upper semicontinuous if either

(i) T is C∗
L(s)-upper semicontinuous with T (W) bounded in Ls(X,Z), and

f :Y −→X is CL-upper semicontinuous, or
(ii) W is compact, T :W −→Ls(X,Z) is continuous, and f :Y −→X is CL-

upper semicontinuous.
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Proof. It follows from Corollary 4.1 and Theorem 4.2 (p. 83) of Schaefer
(1999) that T (W) is equicontinuous on X and is bounded in Lb(X,Z). The
proof is complete.

REMARK 3.5. Let X and Z be given in Corollary 3.3. If T :W −→Ls(X,Z)

is continuous with T (W) bounded in Ls(X,Z), and if f :Y −→X is continu-
ous, then the function � defined in Theorem 3.7 is continuous. See Remark
2.1.

4. Mixed Vector Variational-like Inequalities

This section is devoted to deriving existence results for the mixed vector
variational-like inequality given in (1). The results will be established by
using an existence result for equilibrium problems obtained in Chadli et al.
(2002), stated below as Lemma 4.1.

To state the results, we need some basic definitions. Let K be a nonemp-
ty convex subset of X, and let g:K −→Z and h:K ×K −→Z be functions.

(i) g is called C-convex (Chen and Li, 1996) if

g((1− t)x0 + tx1)∈ (1− t)g(x0)+g(x1)−C

whenever x0, x1 ∈K and 0� t �1.

(ii) For any fixed y ∈K, we shall use hy for the function on K defined by

hy(x)=h(x, y) for x ∈K.

(iii) h is called vector 0-diagonally convex (Chadli et al., 2002) if for any
finite set {y1, . . . , ym}⊂K,

x=
m∑

j=1

tj yj with all tj�0 and
m∑

j=1

tj=1�⇒
m∑

j=1

tjh(x, yj )∈ (−intC)c.

When Z = R, the notion of vector 0-diagonally convexity reduces to
the notion of 0-diagonally convexity introduced in Zhow and Chen
(1998).

(iv) h is said to satisfy the (L)-condition if for any x, y ∈ K and any net
{xα} in K converging to x, the following implication holds:

h(xα, (1− t)x + ty)∈ (−intC)c for all α and

0� t �1�⇒h(x, y)∈ (−intC)c.

REMARK 4.1. Let K be a convex subset of X, and let h:K ×K −→Z be
a function.
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(a) h satisfies the (L)-condition if for every y ∈K,hy is C-upper semicon-
tinuous. See Corollary 2.6 and Theorem 2.7 of Chadli et al. (2002).

(b) If h is vector 0-diagonally convex, and if g:K −→Z is C-convex, then
the function

(x, y) �−→h(x, y)+g(y)−g(x)

is vector 0-diagonally convex (cf. Ansari and Yao, 2001).

The following is stated as Lemma 3.5 in Chadli et al. (2002):

LEMMA 4.1. Let K be a nonempty convex subset of a Hausdorff topologi-
cal vector space X, and let f :K ×K −→Z be a bifunction. Assume that the
following conditions hold.

(i) f is vector 0-diagonally convex and satisfies the (L)-condition.
(ii) For every y ∈K,fy is C-upper semicontinuous on co(E) for every E ∈

F(K).
(iii) (Coercivity) There exist a nonempty compact set K0 ⊂ K and a non-

empty convex compact set K1 ⊂K such that

x ∈K\K0 �⇒f (x, yx)∈ (−int C) for some yx ∈K1.

Then there is an x̂ ∈K such that f (x̂, y)∈ (−int C)c for all y ∈K.

THEOREM 4.1. Let X be Hausdorff, let K be a nonempty convex subset
of X, and let

T :K −→L(X,Z), ϕ:K ×K −→X and f :K ×K −→Z

be functions. Assume that the following conditions are satisfied.

(i) f (x, x)=0 for all x ∈K.
(ii) For every x ∈K, the function y �−→f (x, y) is C-convex.

(iii) The function �:K ×K −→Z defined by

�(x, y)=〈T x,ϕ(x, y)〉 for (x, y)∈K ×K,

is vector 0-diagonally convex.
(iv) The function h=�+f satisfies the (L)-condition.
(v) (Coercivity) There exist a nonempty compact set K0 ⊂K and a non-

empty convex compact set K1 ⊂K such that

x ∈K\K0 �⇒〈T x,ϕ(x, yx)〉+f (x, yx)∈ (−int C) forsome yx ∈K1.
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(vi) For every y ∈K and every E ∈F(K),

(a) ϕy is CL-upper semicontinuous on co(E) with ϕy(co(E)) bounded
in X;

(b) T is C∗
L(b)-upper semicontinuous on co(E);

(c) fy is C-upper semicontinuous on co(E).

Then the MVVLI (T , ϕ, f ) has a solution.

Proof. From Theorem 3.7 and Remark 3.4, we conclude that for every
y ∈ K and every E ∈ F(K),�y is C-upper semicontinuous on co(E), and
so is the function hy . By Lemma 4.1, it remains to show that h is vector
0-diagonally convex.

Let {y1, . . . , ym} be any finite subset of K, and let x =∑m
j=1 tj yj with all

tj �0 and
∑m

j=1 tj =1. It follows from the condition (i) and (ii) that

0=f (x, x)=f



x,

m∑

j=1

tj yj



∈
m∑

j=1

tjf (x, yj )−C and
m∑

j=1

tjf (x, yj )= c

for some c∈C. If
∑m

j=1 tjh(x, yj )∈ (−intC), then

m∑

j=1

tj�(x, yj )=
m∑

j=1

tj {h(x, yj )−f (x, yj )}=−c+
m∑

j=1

tjh(x, yj )∈ (−intC).

This contradicts to the condition (iii). The proof is complete.

REMARK 4.2. Use notation given in Theorem 4.1.

(a) If for every x ∈K,ϕ(x, x)=0 and the function y �−→�(x, y) is C-con-
vex, then �(x, y) is vector 0-diagonally convex.

(b) If K is compact, then in Theorem 4.1, the condition (v) can be omit-
ted.

(c) If T is C∗
L(b)-upper semicontinuous on K, and if for every y ∈K,fy is

C-upper semicontinuous on K and ϕy is CL-upper semicontinous on
K with ϕy(K) bounded in X, then in Theorem 4.1, the condition (iv)
can be omitted. See Remark 4.1 (a).

(d) If for every y ∈K,ϕy is continuous, then in Theorem 4.1, the bound-
edness assumption on ϕy(co(E)) can be omitted.

By using Theorem 3.7(ii), the same reasoning as above proves:



SEMICONTINUOUS MAPPINGS INTO T.V.S. 483

THEOREM 4.2. Let X be Hausdorff, let K be a nonempty convex subset
of X, and let

T :K −→L(X,Z), ϕ:K ×K −→X and f :K ×K −→Z

be functions satisfying the conditions (i)–(v) of Theorem 4.1. If for every y ∈
K and every E ∈F(K),

(a) ϕy is CL-upper semicontinuous on co(E);
(b) T is C∗

L(s)-upper semicontinuous on co(E) with T (co(E)) bounded in
Lb(X,Z);

(c) fy is C-upper semicontinuous on co(E),

then the MVVLI (T , ϕ, f ) has a solution.

From Corollary 3.3, we obtain:

THEOREM 4.3. Assume that either X and Z are either Hausdorff locally
convex with X barrelled, or X is a Baire space. Let K be a nonempty con-
vex subset of X, and let

T :K −→L(X,Z), ϕ:K ×K −→X and f :K ×K −→Z

be functions satisfying the conditions (i)–(v) of Theorem 4.1. If for every y ∈
K and every E ∈F(K),

(a) ϕy is CL-upper semicontinuous on co(E);
(b) T is C∗

L(s)-upper semicontinuous on co(E) with T (co(E)) bounded in
Ls(X,Z);

(c) fy is C-upper semicontinuous on co(E),

then the MVVLI (T , ϕ, f ) has a solution.

References

1. Ansari, Q.H. and Yao, J.C. (2001), Iterative-schemes for solving mixed variational-like
inequalities, Journal of Optimization Theory and Applications, 108, 521–529.

2. Ansari, Q.H. and Yao, J.C. (2000), Nonlinear variational inequalities for pseudomono-
tone operators with applications, Advances in Nonlinear Variational Inequalities, 3, 61–69.

3. Ansari, Q.H. and Yao, J.C. (1998), Prevariational inequalities in banach spaces. In
Cacetta, L. et al. (eds.), Optimization Techniques and Applications, Curtin University of
Technology, Perth, Australia, Vol. 2, pp. 1165–1172.

4. Chadli, O., Chiang, Y. and Huang, S. (2002), Topological pseudomonotonicity and vector
equilibrium problems, Journal of Mathematical Analysis and Applications, 270, 435–450.

5. Chen, G.Y. (1989), Vector variational inequality and its applications for multiobjective
optimization, Chinese Science Bulletin, 34, 969–972.



484 Y. CHIANG

6. Chen, G.Y. and Yang, X.Q. (1990), Vector complementarity problem and its equiva-
lence with weak minimal element in ordered spaces, Journal of Mathematical Analysis
and Applications, 153, 136–158.

7. Chen, G.Y. and Cheng, G.M. (1987), Vector variational inequalities and vector opti-
mization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, New
York/Berlin, 285, 408–416.

8. Chen, G.Y. and Li, S.L. (1996), Existence of solutions for a generalized quasi-vector var-
iational inequalities, Journal of Optimization Theory and Applications, 90, 321–334.


